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The connection between the finite size of an evolving population and its dynamical behavior is examined
through analytical and computational studies of a simple model of evolution. The infinite population limit of
the model is shown to be governed by a special case of the quasispecies equations. A flat fitness landscape
yields identical results for the dynamics of infinite and finite populations. On the other hand, a monotonically
increasing fitness landscape shows “epochs” in the dynamics of finite populations that become more pro-
nounced as the rate of mutation decreases. The details of the dynamics are profoundly different for any two
simulation runs in that events arising from the stochastic noise in the pseudorandom number sequence are
amplified. As the population size is increased or, equivalently, the mutation rate is increased, these epochs
become smaller but do not entirely disappear.
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INTRODUCTION

The modern theory of the evolution of biological organ-
isms is based upon simple and demonstrable principles. The
change in the frequency of alleles in a population resulting
from natural selection and the generation of new alleles
through imperfect reproduction is well established. Never-
theless, the details of how evolution occurs, including the
level at which natural selection acts and the role of finite
population size, are current topics of great interest in the
research community �1�.

Attempts have been made to address some of the complex
issues in evolutionary theory by means of simple models that
are amenable to analytical and computational studies �2–7�.
Evolving populations are modeled without incorporating the
enormous amount of detail that dictates the course of real
biological evolution. The model introduced in this paper is a
particularly simple one which effectively bridges the gap be-
tween several other models of evolution. Indeed, it is mor-
phologically identical, for example, to a computational ver-
sion of the quasispecies model described by Campos and
Fontanari �8� where the population is made up of a set of
binary strings that undergo asexual reproduction. A particular
binary string representing a single member can be interpreted
as a portion of that member’s genome.

The model may also be viewed as a modified, multiple-
allele Wright-Fisher model with mutations and weighted se-
lection �9–11�, or, alternatively, as a drastically simplified
version of the “artificial life” platform, AVIDA �12,13�. Fur-
thermore, it is similar to the “Royal Road” genetic algorithm
where several blocks comprising a string are replaced by
single bits �14,15�. Despite the fact that the model is simpler
than either the Royal Road algorithm or AVIDA, it retains the
basic elements that are necessary for a population to evolve
and many features seen in these other models are also evi-
dent here. For example, the average fitness at low mutation
rates exhibits plateau structures for nontrivial fitness land-
scapes.

As is the case with some other computational models of
evolution, the binary string model examined in this paper is

governed by quasispecies equations in the large population
limit �16–18�. More precisely, when the product of the popu-
lation size M and mutation rate � is large ��M �1�, the
dynamics of the simulations approach those given by the
quasispecies equations. The departure from the quasispecies
equations when the above relation is not satisfied and the
subsequent transition from infinite to finite population behav-
ior is a major focus of the present paper. The transition ap-
pears especially relevant to determining the course of evolu-
tion. In the large population limit, all genomes are present
with their correct respective frequencies. Simulations be-
come deterministic in the sense that they can be made to
reproduce the quasispecies equations as closely as desired,
independent of the pseudorandom number sequence, by in-
creasing the population to a suitably large size while keeping
the mutation rate fixed.

On the other hand, a small population does not generally
follow the quasispecies equations, as can be seen through the
following argument. Let ps�t� represent the frequency of
string s at time t as given by the quasispecies equations. Now
consider a simulation where the size of the population is
denoted by M. The condition Mps�t��1 implies that the
string is not usually present in any given simulation run.
More importantly, the absence of the string influences the
future of the distribution. The finite size of the system can
thereby radically change the dynamics from those of qua-
sispecies theory. Furthermore, it will be seen later that this
effect is not removed when many simulation runs are aver-
aged.

The results here support the work of several other authors.
For example, analytic scaling arguments by Zhang �19� indi-
cate that solutions to the quasispecies equations have a be-
havior reminiscent of the punctuated equilibrium of Gould et
al. �20�. Zhang has found that a decrease in the population
size while keeping the mutation rate fixed amplifies this ef-
fect so that for long periods of time the genome distribution
remains in a quiescent or metastable state. Rare events trig-
gered by stochastic noise cause the population to shift to
another metastable distribution with higher fitness. These
metastable configurations have also been noted in analytical
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work on the “strong selection weak mutation” limit �21,22�.
Finally, they have been seen in the work of Nimwegen et al.
�14� using the Royal Road genetic algorithm. They are called
“fitness epochs” by these latter authors and that term will be
adopted here.

In the present paper, fitness epochs are shown to exist also
in the binary string model; even for large populations that are
governed by quasispecies equations, where �M �1, in
agreement with the work of Zhang mentioned above. When
the inequality does not hold, the fitness epochs become much
more pronounced and are of longer duration. The mechanism
causing the fitness epochs, their impact on the evolutionary
history of the population and the crossover from quasispecies
behavior to finite populations will be examined within the
context of the binary string model.

It is important to distinguish between the finite population
work here and that of Alves and Fonatanari �23� where the
authors have been concerned with the so-called “error thresh-
old” phenomenon that pervades the quasispecies literature.
The error threshold arises in a system having a fitness land-
scape that is flat with the exception of one master sequence
that has a larger fitness. In the limit where the length of each
string as well as the population size is infinite, one observes
a critical value of the mutation rate below which the system
forms a cloud of quasispecies around the master sequence.
For larger mutation rates than the critical one, the distribu-
tion of genomes is uniform. By contrast, the work presented
here is primarily concerned with short strings that typically
have only four bits. In terms of biology, this is equivalent to
a gene locus which has a finite number of alleles. In addition,
the mutation rate is usually kept low so that the regime is far
from the error threshold.

The paper is organized as follows. The binary string
model is carefully defined and compared with other evolu-
tionary models. The particular quasispecies equations de-
scribing the model in the large population limit �M �1 are
then derived. These are solved analytically for the special
case of a flat fitness landscape; i.e., the case of random “ge-
netic drift.” Simulation results are presented showing that,
even when the above limit does not hold, the dynamics con-
tinue to be governed by the quasispecies equations.

This is in stark contrast to the case of populations that are
under selective pressure, which is the next topic. Here, a
nontrivial fitness landscape is introduced that is a monotoni-
cally decreasing function of the Hamming distance between
any string in the population and an ideal string. The ideal
string can be thought of as effectively representing a fixed
environment. In the large population limit where the above
condition is satisfied, the system dynamics are again gov-
erned by the quasispecies equations. When it is not satisfied,
large fitness epochs are observed that cause the dynamics to
deviate from quasispecies theory.

DESCRIPTION OF THE MODEL

The model uses a binary string to represent each organ-
ism. All of the binary strings comprising the population have
the same number of bits �N�. For the most part, the data in
this paper come from simulations using strings with N=4.

However, most of the results and conclusions do not depend
strongly upon the particular value of N. Also, a single fixed
binary string, which has the same length as that of the popu-
lation strings, represents the environmental niche and can be
regarded as the ideal string that has the maximum possible
fitness.

Reproduction occurs asexually so that the offspring of a
particular binary string are copies of that string. Mutations
are introduced into each offspring with a fixed probability. If
a mutation occurs a single bit of the offspring, chosen ran-
domly, is changed. This is the only type of mutation present
and it is meant to mimic point mutations in a biological
genome where one base pair is altered. Most other models in
the literature allow any number of simultaneous mutation
events so that all bits of any one offspring could be changed,
allowing a nonzero transition probability to any other string.
Here, by contrast, an offspring can only differ from the par-
ent by a single bit. In this respect, there is a negligible dif-
ference between this binary string model and the other mod-
els when the mutation rate is low and the string length is
small.

The number of offspring produced by a given parent
string differs according to a fixed fitness landscape. The sim-
plest case is a flat fitness landscape where all parents have
the same fitness and therefore produce the same number of
offspring. On the other hand, a monotonically increasing fit-
ness landscape models selection pressure from the environ-
ment. The Hamming distance k between the environment
string and the parent string �i.e., the total number of corre-
sponding bits between the strings that differ� determines the
number of offspring. The smaller the Hamming distance, or
the closer the match between the two strings, the more off-
spring are produced. The number of offspring ck is calculated
using the formula

ck = c0e−k/n. �1�

The value of ck generally lies between the two integers,
m�ck�m+1. The number of offspring is chosen randomly
to be either m or m+1 and it is done proportionately so as to
make the average ck equal to that obtained from Eq. �1�.

The above equation is designed to give reasonable behav-
ior under the considerations of the model because it produces
a sharp decrease in the fecundity with increasing Hamming
distance. The prefactor c0 and the integer n are arbitrary. In
the sections that follow, simulation data are presented using
four bit strings �N=4� where c0=3 and n=2.

All members of the population are allowed to reproduce
and the population is therefore sampled for the parent strings
without replacement. This procedure is different than the
standard sampling with replacement that is done, for ex-
ample, in the unmodified Wright-Fisher model, where noise
introduced through the sampling procedure is necessary to
cause drift. It has been found that the simulation results of
the present model are insensitive to the sampling procedure,
as stochasticity is introduced through the culling process de-
scribed in the next paragraph.

The offspring along with the parents are collected to-
gether into an intermediate population which is then ran-
domly culled to reduce it to a size equal to that of the pre-
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vious generation. Thus the size of the population remains
constant from generation to generation. The restriction of
constant population size is the only spatial constraint im-
posed upon the model and is similar in this respect to a
finite-sized system under the mean field approximation of
statistical mechanics.

The model contains the basic ingredients essential for
evolution. Imperfect replication is modeled through the re-
production algorithm outlined above and natural selection is
modeled by means of the difference in fecundity determined
by the fitness landscape along with the culling process. The
following is a summary of the binary string algorithm:

�1� Begin a generation by listing, in random order, all of
the member strings of the population. These are called the
“parent” strings. Select the first parent from the list.

�2� Generate offspring by making exact copies of the par-
ent. The number of offspring is determined by the Hamming
distance between the parent string and the environment
string according to Eq. �1�. For the case of a flat fitness
landscape, the number of offspring is constant.

�3� Determine if each offspring is a mutant by drawing a
random number between zero and one and comparing it with
a fixed probability for a mutant string ���. If in following
this procedure an offspring is designated a mutant, choose a
single bit of the offspring at random and change it to the
opposite value.

�4� If the list of parent strings has not been exhausted
select the next parent on the list and go back to step �2�. If
none are left, randomly select a fixed number M of strings
from the intermediate population of parents plus offspring.

These M strings comprise the next generation.
�5� The iteration of a generation has been completed. Go

to step �1� to proceed to the next generation.

ANALYSIS OF THE MODEL THROUGH RECURRENCE
RELATIONS

One can analyze the large population behavior of the
model using recurrence relations for the probability distribu-
tion. The recurrence relations are equivalent to a special case
of the discrete quasispecies equations �18�. Here, the distri-
bution is written in terms of the probability that a string has
a Hamming distance k measured with respect to a fixed
string representing the environment �0�k�N�. In writing
the recurrence relations an assumption is made that any sto-
chastic noise will be averaged out. It will be shown that this
assumption holds true for the case of genetic drift. However,
it fails badly for the case of selection pressure until the sys-
tem reaches equilibrium. The equilibrium distribution given
by the recurrence relations is the same as that observed in
simulation data.

The recurrence relations for the model will now be con-
structed. Consider a population of M binary strings. Let the
number of strings with Hamming distance k at time t be
given by nk�t�. Let the next generation occur at time t+�t.
Further, let ck be the number of offspring for a string with
Hamming distance k and let the mutation rate � be the prob-
ability that a particular offspring undergoes a point mutation.
For a value of k within the range �0�k�N�, the new value
of nk after one generation will be given by

nk�t + �t� =

�1 + �1 − ��ck�nk�t� + �
N − �k − 1�

N
ck−1nk−1�t� + �

k + 1

N
ck+1nk+1�t�

M + �
k=0

N

cknk�t�
M . �2�

The three terms in the numerator represent the average
contributions from strings of the parent generation with the
respective Hamming distances of k, k−1, and k+1. The first
term is the number of parent strings plus those offspring that
are without mutations and are hence exact replicas of the
parents.

The second term is the offspring of the k−1 parent strings
with a mutation that increases the Hamming distance to k.
The factor �N− �k−1�� /N gives the probability that the par-
ticular bit chosen for mutation is one that agrees with the
corresponding bit in the environmental string. When it is
changed, it will then disagree with the environment string
and therefore the Hamming distance will have increased by
one.

Analogous reasoning applies to the third term, which rep-
resents those offspring of parent strings with Hamming dis-

tance k+1 that undergo a mutation which decreases the
Hamming distance to k. The probability that the particular bit
chosen to be altered is one that disagrees with the corre-
sponding environmental string bit is �k+1� /N. Finally, the
denominator in Eq. �2�, along with the population size M
multiplying the numerator, represents the effect of culling.

The equations for nk�t�, where k=0 and k=N, are of the
same form as Eq. �2� except that there are only two terms in
the numerator. The n0�t� equation does not have the k−1
term and the nN�t� equation does not have the k+1 term.

The frequency of a string with Hamming distance k is
pk�t�=nk�t� /M. Writing Eq. �2� in terms of pk�t� gives the
recurrence relations for the distribution of strings, Eq. �3�,
with k in the range �0�k�N�. Equations �4� and �5� for
k=0 and k=N are included for convenience of reference.
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pk�t + �t� =

�1 + �1 − ��ck�pk�t� + �
N − �k − 1�

N
ck−1pk−1�t� + �

k + 1

N
ck+1pk+1�t�

1 + �
k=0

N

ckpk�t�
, �3�

p0�t + �t� =

�1 + �1 − ��c0�p0�t� +
�

N
c1p1�t�

1 + �
k=0

N

ckpk�t�
, �4�

pN�t + �t� =

�1 + �1 − ��cN�pN�t� +
�

N
cN−1pN−1�t�

1 + �
k=0

N

ckpk�t�
. �5�

It is difficult to solve these nonlinear equations for the
time dependence of the distribution for general k. However,
one can solve for the equilibrium distribution by diagonaliz-
ing the evolution matrix constructed from the numerators of
Eqs. �3�–�5�. The dominant eigenvector is then the equilib-
rium state �3,18�. In lieu of an analytical solution for the
complete dynamics, these equations may be iterated numeri-
cally to give the full history of the distribution and the result
may then be compared with simulation data.

CASE I: FLAT FITNESS LANDSCAPE

On a flat fitness landscape, the number of offspring pro-
duced by each parent is independent of the Hamming dis-
tance, ck→c. Equations �3�–�5� then reduce to linear recur-
rence relations. Further insight can be obtained through
approximating �pk�t�= pk�t+�t�− pk�t� as the derivative
dpk /dt. This will be a good approximation to the recurrence
equations when ��pk�t���1; a condition that holds when the
mutation rate is small ���1� and/or when the system is
close to equilibrium. The result is the following set of differ-
ential equations:

dpk

dt
=

�c

�1 + c��− pk�t� +
N − �k − 1�

N
pk−1�t� +

k + 1

N
pk+1�t�� ,

�6�

dp0

dt
=

�c

�1 + c��− p0�t� +
1

N
p1�t�� , �7�

dpN

dt
=

�c

�1 + c��− pN�t� +
1

N
pN−1�t�� . �8�

These equations can be solved exactly using standard
techniques for a homogenous linear system with constant
coefficients �24�. Writing all pk�t� as a column vector of
length N+1 puts Eqs. �6�–�8� in the form

d

dt
p�t� =

�c

�1 + c�
Ap�t� . �9�

The notation used here is the following:

A =	
− 1

1

N
0 0 0 ¯ 0

N

N
− 1

2

N
0 0 ]

0
N − 1

N
− 1

3

N
0 ]

0 0
N − 2

N
− 1 � 0 0

] � �

N − 1

N
0

] 0
2

N
− 1

N

N

0 ¯ ¯ 0 0
1

N
− 1


 ,

p�t� =	
p0�t�
p1�t�
p2�t�
]

]

pN−1�t�
pN�t�


 .

The aim is to write the vector p�t� as a linear combination
of eigenvectors using the following decomposition:

p�t� = �
n

an��n�e−r�n�t. �10�
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The sum runs over all of the eigenvectors ��n� and the
constants an are determined from the initial conditions. Sub-
stituting the form �e−rt into Eq. �9� gives the secular equation

det�A� − �I� = 0. �11�

The eigenvalues for this particular equation are related to
the r�n� by the following equation:

r�n� =
�c

�1 + c��1 −
��n�

N
� . �12�

The matrix A� has the form

A� =	
0 1 0 0 0 ¯ 0

N 0 2 0 0 ]

0 N − 1 0 3 0 ]

0 0 N − 2 0 � 0 0

] � � N − 1 0

] 0 2 0 N

0 ¯ ¯ 0 0 1 0


 , �13�

which can be shown to have the following characteristic
equation:

� 

n=2,4,6,. . .

N

��2 − n2� = 0, �14�

when N is even, and



n=1,3,5,. . .

N

��2 − n2� = 0, �15�

when N is odd. The eigenvalues are then

��	n� = 0, 	 2, 	 4, 	 6, . . . , 	 N �16�

for even N, and

��	n� = 	 1, 	 3, 	 5, . . . , 	 N �17�

for odd N.
It is clear that the eigenvalue corresponding to the eigen-

vector representing the system at equilibrium is given by
��+N�= +N, as this leads to r�+N�=0 by Eq. �12�. The equilib-
rium eigenvector has elements proportional to the binomial
coefficients Ck

N, as can be shown directly from Eqs. �6�–�8�
when the left hand side of each is zero using mathematical
induction. Note that k is again the Hamming distance be-
tween strings and the environmental string, as well as the
row index for the eigenvector.

The binomial form of the equilibrium eigenvector is ex-
pected because all strings should occur with the same fre-
quency when the system reaches the equilibrium state. No
particular string has an advantage over any other as they all
have the same number of offspring. A uniform distribution of
strings means that the fraction having a Hamming distance k
is simply the total number of strings that can exist having
that Hamming distance, given by the combination Ck

N, di-
vided by the number of possible strings 2N.

The remaining eigenvectors can all be calculated by sub-
stituting the eigenvalues �16� and �17� into Eq. �11� to give

the general distribution. As an illustration, consider the case
of four-bit strings �N=4�. The general solution is

p�t� = a+4	
1

4

6

4

1

 + a+2	

1

2

0

− 2

− 1

e−r�+2�t + a0	

1

0

− 2

0

1

e−r�0�t

+ a−2	
1

− 2

0

2

− 1

e−r�−2�t + a−4	

1

− 4

6

− 4

1

e−r�−4�t. �18�

The eigenvectors have been ordered from left to right
with an increasing magnitude of r�n�. The leftmost eigenvec-
tor represents the equilibrium state where r�+4�=0. As the
system approaches equilibrium the second eigenvector will
tend to dominate the dynamics, unless its coefficient is zero
�i.e., a+2=0�.

The coefficients an may be determined from the initial
distribution of strings p�0� by setting t=0 in Eq. �18� and
then solving the resulting system of linear equations. For
example, if one begins with identical strings, all with Ham-
ming distance k=4, the resulting coefficients are a+4=1 /16,
a+2=−1 /4, a0=3 /8, a−2=−1 /4, and a−4=1 /16. It is worth
noting that the coefficient of the equilibrium eigenvector a+4
must always be equal to 1 /16, independent of the initial
conditions, in order to give the correct equilibrium distribu-
tion. For a general N-bit string model, the coefficient of the
equilibrium state eigenvector will be a+N=2−N when the ei-
genvector is written with its elements equal to the binary
coefficients.

Figure 1 shows that the analytical solution is in excellent
agreement with simulation data. Furthermore, the data result-
ing from many averaged runs are found to be independent of
population size, although the behavior of very small popula-
tions is too erratic to obtain sufficiently accurate results. In
the language of statistical mechanics, the simulation is self-
averaging.

CASE II: MONOTONICALLY INCREASING FITNESS
LANDSCAPE

Selection is imposed by changing the fitness landscape so
that strings having a small Hamming distance from the en-
vironment string are favored. The number of offspring cre-
ated from a parent string is now obtained from the exponen-
tial form of the fitness landscape, Eq. �1�. For the four-bit
strings examined in this paper, the average number of off-
spring varies from 3.0 for parents with a Hamming distance
0 to a value of 0.4 for parents with a Hamming distance of 4,
as previously explained.

Figures 2�a�–2�d� show how the probability distribution
behaves for four different mutation rates. The discrete points
are the simulation data averaged over several runs. The solid
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lines are the results obtained from numerically iterating the
recurrence relations �3�–�5�. Lines are used to make a dis-
tinction between recurrence relations and simulations, al-
though it should be understood that the recurrence relations
also give one discrete point per generation. For the highly
nonbiological limit of a mutation rate �=1.0 �i.e., every off-
spring contains a mutation�, there is good agreement between
the simulation and the recurrence relations, as illustrated by
Fig. 2�a�.

As the mutation rate is decreased, the simulation data de-
viates from the recurrence relations and hence from qua-
sispecies theory. Figures 2�b�–2�d� show an increasing dis-
crepancy; especially in the last two plots where the mutation
rates are small �0.01 and 0.001�.

The disagreement between the recurrence relations and
the simulation data is a result of the finite size of the popu-
lation. Consider the data displayed in Fig. 3. Here, the quan-
tity p1�t� �the probability that a string has a Hamming dis-
tance k=1� for a fixed mutation rate of �=0.05 is plotted for
several population sizes. The curve without any data points is
that given by the recurrence relation for p1�t�. As the size of
the system increases, p1�t� is seen to be collapsing to the
values given by its recurrence relation. The recurrence rela-
tions are thus seen to represent the behavior of a system
having a population large enough so that effects due to its
finite size are negligible, regardless of the value of the mu-
tation rate.

It is instructive to investigate the origin of this finite popu-
lation effect. Consider the simulation data shown in Figs.
4�a�–4�d�. In contrast to all of the data in the previous fig-
ures, each plot is the result of a single run. The plots have the
same mutation rate �=0.001 and the same population size
M =3600. The only difference between them is the sequence
of pseudorandom numbers used to decide when mutations
occurred and which members are preserved when the popu-
lation is culled.

The form of the plots is roughly the same. They begin
with identical initial populations where all strings have a

FIG. 1. �Color� Distribution of genomes for a flat fitness land-
scape. The points show simulation data for a population of M
=3600 four-bit strings, where the initial conditions are set with all
strings having a Hamming distance equal to 4. The mutation rate is
set to �=0.01 and the number of offspring produced by each parent
is c=3. The data represent an average over 104 independent runs.
The solid lines are the results predicted from Eq. �18� and the agree-
ment is excellent. Key: �, p0�t�; 
, p1�t�; �, p2�t�; �, p3�t�; and
�, p4�t�.

FIG. 2. �Color� Distribution of genomes for exponential fitness
landscape. Points are simulation data averaged over 103 indepen-
dent runs. Lines are theoretical curves from recurrence relations
�3�–�5�. Population size M =3600; mutation rate �a� �=1.00, �b�
�=0.10, �c� �=0.01, and �d� �=0.001. Key: �, p0�t�; 
, p1�t�; �,
p2�t�; �, p3�t�; �, p4�t�.
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Hamming distance equal to four �i.e., all strings are equal to
“0000”�. After a few generations, one or more mutant off-
spring are produced having a Hamming distance equal to 3
�i.e., either “0001,” “0010,” “0100,” or “1000”�. Any of
these mutants that survive the culling process reproduce at a
higher rate than any of the other strings. Eventually, after
several more generations, the new genomes dominate the
population. This produces the leftmost peak in each of the
plots.

The next peak in the distribution plot occurs when a par-
ent with a Hamming distance of 3 produces a mutant off-
spring having a Hamming distance of 2. The genome of this
mutant then dominates the population, and so on until finally
an “ideal” string with a Hamming distance of 0 arises. The
population then reaches an equilibrium distribution where
most strings will have a Hamming distance of 0 and a few
will have larger Hamming distances as a result of occasional
mutations. Unlike the dynamics, the equilibrium distribution
is found to be independent of the system size and agrees with
that obtained from the recurrence relations.

The details of the evolution for the populations displayed
in Figs. 4�a�–4�d� are quite different even though their gen-
eral form is similar. For example, the peaks where the ge-
nomes dominate are of different heights and widths and they
also occur at different times. This is a consequence of the
fact that relatively rare stochastic mutation events are con-
trolling the dynamics. The frequency of these events depends
on the mutation rate and the size of the population. Clearly,
the evolution of the genome distribution for many typical
runs like those shown in Figs. 4�a�–4�d� cannot yield an
average behavior in agreement with that of quasispecies
theory. The relatively small population size along with a
small mutation rate will result in long periods where the
population is dominated by genomes of intermediate fitness
before the equilibrium distribution is reached.

The possible evolutionary paths that the dynamics can
take are conveniently illustrated by the graph in Fig. 5. All
16 possible genomes are shown and those genomes that dif-
fer from one another by a single mutation are connected by a
link. Genomes with the same Hamming distance form the

FIG. 3. �Color� Distribution of genomes with a Hamming dis-
tance k=1 �p1�t�� for several population sizes. Each curve repre-
sents an average of 103 independent runs. The curve without points
is given by the recurrence equation �3� putting k=1. Mutation rate
�=0.05. Key: �, M =180; 
, M =360; �, M =900; �, M =3600;
�, M =36000.

FIG. 4. �Color� Examples of the evolution of the distribution of
genomes. Each peak represents a fitness epoch. Starting from the
left-hand side, the first peak indicates the period when strings with
k=3 dominate, the second where strings with k=2 dominate, and
the third where strings with k=1 dominate. Each of the figures
shows data for a single run using a different sequence of pseudo-
random numbers but otherwise having the same parameters. Popu-
lation size M =3600, mutation rate �=0.001. Key: �, p0�t�; 
,
p1�t�; �, p2�t�; �, p3�t�; �, p4�t�.
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columns in Fig. 5. The evolution of the population can be
seen as a progression from one where the leftmost genome
�“0000”� dominates to one where the rightmost genome
�“1111”� dominates.

The reader will note that those other evolutionary models
based on quasispecies which allow multiple simultaneous
mutations are not restricted to follow these paths. In these
models it is possible, for example, to produce an ideal string
“1111” from a parent string “0000” as a result of four muta-
tions in the one offspring. Allowing multiple mutations fa-
cilitates analytical treatment but when the population is small
and the mutation rate is low, they are extremely rare.

The transition from large population to small population
behavior for fixed �but low� mutation rate will now be ana-
lyzed for the binary string model introduced in this paper.
Let us first consider, from the standpoint of a simulation, the
evolution of the model with a very large population, starting
from an initial condition where all strings are identical and
have a Hamming distance of 4. After one generation, a small
but finite fraction of mutant offspring with a Hamming dis-
tance equal to 3 are present. Furthermore, all four genomes
with k=3, shown in the second leftmost column in Fig. 5, are
represented with equal frequencies. After two generations, a
tiny fraction of strings with Hamming distance k=2 exist.

Following this line of reasoning, ideal strings with a Ham-
ming distance of 0 are present in the population after only
four generations. They do not immediately dominate the sys-
tem however, as the strings with larger Hamming distance
are much more numerous. The number of generations neces-
sary to reach equilibrium is proportional to the logarithm of
the inverse mutation rate, in accordance with Malthusian
growth. In the intermediate generations, strings with larger
Hamming distances undergo a brief increase in their frequen-
cies and then quickly decrease.

One can visualize the dynamics as sweeping through the
graph in Fig. 5 horizontally from left to right without any
vertical variation, because all genomes with the same Ham-
ming distance must occur with equal frequencies. The ge-
nome distribution is seen to follow a dynamics that is inde-
pendent of the particular pseudorandom number sequence,

which is consistent with the fact that the dynamics is gov-
erned by the quasispecies equations.

Consider now the behavior of a smaller population. In this
case, the simulation data shows that the evolutionary paths in
Fig. 5 are not all sampled evenly. Instead, certain paths
dominate others and in doing so actively inhibit them. This
phenomenon is the principal one that determines the dynam-
ics and causes the model to deviate from quasispecies behav-
ior. The present authors call this important effect “evolution-
ary path fixing” and it is quite possibly relevant to biological
evolution.

The mechanism of evolutionary path fixing is twofold.
First, the advent of a novel mutation produces a string with a
higher reproductive rate that rapidly displaces members car-
rying inferior genomes in the population and thereby de-
creases the genetic diversity. The smallness of the population
makes it highly probable that rare genomes disappear com-
pletely. In fact, the well-established counterpart to this effect
observed in the evolution of microbial colonies is called “pe-
riodic selection” �25�.

The second mechanism of evolutionary path fixing has
some overlap with the first. In the process of displacing in-
ferior members of the population, direct ancestors of the
novel mutants are also made to go extinct. This means that
other mutant genomes with the same fitness as the novel
mutants are suppressed so that they are rare or never occur at

FIG. 6. �Color� Lines are the genome distribution written in
terms of Hamming distance pk�t�. Points represent all of the 16
possible genomes. Each pk�t� is represented by a line and is seen to
be dominated to a certain degree by a particular genome, demon-
strating evolutionary path fixing. Both figures are data from single
runs having the same parameters but different sequences of pseu-
dorandom numbers. Population size M =3600; mutation rate �
=0.001.

FIG. 5. All possible genomes for the four-bit model. Links exist
between genomes that are connected by a single mutation, hence
only strings having genomes differing by one bit can be parents of
one another. Initial conditions have all strings with identical ge-
nomes “0000.” As the simulation proceeds, mutant offspring are
produced and genomes further to the right are favored. There are 24
�4!� possible paths to the string with the greatest fitness “1111.” For
low mutation rates some of these paths will dominate. This is called
“evolutionary path fixing.”
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all. Referring again to Fig. 5, the result of this effect is to
favor one member of each vertical column. This is in sharp
contrast to quasispecies behavior where all members of a
single column are equally represented in the population.

An extreme case of evolutionary path fixing can be visu-
alized by considering the domination of the dynamics by a
single path through the graph in Fig. 5. The question as to
which of the paths is actually selected can only be answered
through detailed knowledge of the sequence of pseudoran-
dom numbers employed in a particular simulation. For a
fixed population size, it is found that there is a smooth tran-
sition from all paths to a single path as the mutation rate is
decreased.

Evolutionary path fixing through the random dominance
of particular genomes is directly observable from the simu-
lation data. Figures 6�a� and 6�b� show the data from two
independent simulation runs. The individual genomes are
shown with points and the distribution pk�t� with lines. Here,
the sum of the individual genome plots with a Hamming
distance k must add up to give pk�t�. Of course, p4�t� and
p0�t� are identical to the plots for the genomes “0000” and
“1111,” respectively, as they are the only ones contributing to
the Hamming distances k=4 and k=0.

In Fig. 6�a� one can see that p2�t� is clearly dominated by
a single genome out of the six possible genomes with k=2.
On the other hand, p1�t� has two out of the possible four
genomes dominating it, with one of them having roughly
twice the frequency of the other. Finally, p3�t� has all four
genomes with k=3 present. However, the frequency of the
most successful one is twice times that of its nearest com-
petitor. Figure 6�b� shows a similar pattern where a single
genome dominates each peak.

DISCUSSION

It has been shown that finite population size has a pro-
found effect on evolutionary dynamics when there is selec-
tion pressure. Fitness epochs occur that are markedly differ-
ent from the behavior predicted by quasispecies theory.
However, a system with a flat fitness landscape where there

is no selection pressure has a dynamics that is independent of
population size.

The preceding analysis of the binary string model serves
to clarify some aspects of evolutionary modeling and the
connection to microbial ecology. In a minimalist sense the
model captures the essential features of a microbial popula-
tion, exhibiting evolutionary path fixing which includes the
biological mechanism of periodic selection. In addition, the
equilibrium state of the model resembles a “climax commu-
nity” in microbial ecology, where the relative frequencies of
species do not change for long periods of time. One can also
study the connection between a climax community and equi-
librium statistical mechanics. This connection has already
been partially explored �26�.

Much of the behavior of the binary string model is similar
to more complicated models such as the AVIDA platform and
the Royal Road genetic algorithm. Features such as fitness
epochs are exhibited by all these models and are presumably
caused by the same evolutionary path fixing mechanism.

The inherent simplicity of the model so far does not allow
for the consideration of the interactions between species es-
sential to microbial populations. Also, modifications of the
environment by the population are not within the scope of
the model as it currently stands. Finally, important coopera-
tive interactions between similar organisms are neglected,
not the least of which is the exchange of genetic material
through recombination. A large amount of work remains to
be done in these areas.
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